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Models of Quantitative Estimations:  

Rule-Based and Exemplar-Based Processes Compared 

The cognitive processes underlying quantitative estimations vary. Past research has 

identified task-contingent changes between rule-based and exemplar-based processes (Juslin, 

Karlsson, & Olsson, 2008). Von Helversen and Rieskamp (2008), however, proposed a 

simple rule-based model, the mapping model, that outperformed the exemplar model in a task 

thought to promote exemplar-based processing. This raised questions about the assumptions 

of rule-based versus exemplar-based models that underlie the notion of task-contingency of 

cognitive processes. Rule-based models, such as the mapping model, assume the abstraction 

of explicit task knowledge. In contrast, exemplar models should profit if storage and 

activation of the exemplars is facilitated. Two studies tested the importance of the two 

models’ assumptions. When knowledge about cues existed, the rule-based mapping model 

predicted quantitative estimations best. In contrast, when knowledge about the cues was 

difficult to gain, participants’ estimations were best described by an exemplar model. The 

results emphasize the task contingency of cognitive processes.  

 

Keywords: decision making; simple heuristics; multiple cue judgments; quantitative 

estimation 
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Models of Quantitative Estimations:  

Rule-Based and Exemplar-Based Processes Compared 

How do people estimate a continuous quantity, such as the selling price of their house 

or the quality of a job candidate? In many cases people base their estimations on attributes or 

features of the object under evaluation that are probabilistically related to the quantity being 

estimated. For example, when estimating the selling price of a house people could rely on 

features such as the size of the house, the attractiveness of the neighborhood, or the presence 

of a deck. Cognitive models of estimation try to explain which features people use and how 

they integrate them to estimate a continuous criterion, that is, the quantity of interest.  

Although quantitative estimation tasks are structurally quite similar to categorization 

tasks, two different research traditions have dominated in the two fields. In quantitative 

estimations, previous research has largely relied on linear additive models for describing 

people’s estimations, such as multiple linear regression, while exemplar models prevailed in 

categorization. However, recently these two fields have been linked, and exemplar models 

originally proposed for categorization tasks have been introduced to the area of estimation 

(Juslin, Olsson, & Olsson, 2003). In this vein, Juslin, Karlsson, and Olsson (2008; Karlsson, 

Juslin, & Olsson, 2007) have argued that people frequently do not apply rules when making 

estimations but instead rely on an exemplar-based process. According to exemplar models 

people estimate the criterion of an object by retrieving the criterion values of similar 

exemplars from memory. Alternatively, von Helversen and Rieskamp (2008) have proposed 

the mapping model. The mapping model assumes that people estimate the criterion value of 

an object by first categorizing the object based on its features and then using a typical 

criterion value of past objects falling into the same category as an estimate. Although the 

exemplar model and the mapping model argue for conceptually different estimation 
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processes, both models have been proposed for estimation tasks in which the standard 

regression approach did not provide a good account of people’s estimations. Assuming that 

cognitive processes such as estimation are context dependent, the goal of the present article is 

to specify the judgment characteristics that lead to cognitive processes of quantitative 

estimations that can be best described by the two models. Furthermore, we aim to strengthen 

the connection between the two research traditions on categorization and estimation. 

Models of Estimation 

Consistent with the widespread assumption that human cognition comprises multiple 

processing modes (Ashby, Alfonso-Reese, Turken, &Waldron, 1998; Erickson & Kruschke, 

1998; Hahn & Chater, 1998; Nosofsky, Palmeri, & McKinley, 1994), we assume that the 

cognitive processes underlying quantitative estimations can be described by distinct cognitive 

models. These models of estimation can be broadly classified by the underlying processes 

they assume, into rule-based models and more implicit, similarity-based models (Hahn & 

Chater, 1998; Juslin et al., 2003; Olsson, Enkvist, & Juslin, 2006; Patalano, Smith, Jonides, & 

Koeppe, 2001). Rule-based models rely heavily on the abstraction of information and often 

assume a controlled, serial, and verbally accessible cognitive process. In contrast, similarity- 

or exemplar-based processes rely on minimal abstraction, storing specific instances (Juslin & 

Persson, 2002). They are often thought to be parallel in nature and not verbally accessible 

(Juslin & Olsson, 2004).  

The dominant approach to quantitative estimation, assuming a linear additive 

estimation process, falls into the category of rule-based models (Anderson, 1981; Brehmer, 

1994; Brunswik, 1952; Hammond, 1955; Hammond & Stewart, 2001). Accordingly, 

estimation processes are conceptualized as a process of weighting and adding information 

that can be captured by a multiple linear regression. According to regression models, each 
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object can be described on several dimensions, so-called cues, which are probabilistically 

related to the quantity of interest, the criterion that is being estimated. The specific features or 

characteristics by which an object is described on a cue dimension are the cue values (e.g., the 

cue “size” could have a cue value “large”). For dichotomous cue values we define the cue 

characteristic indicating a higher criterion value as a positive cue value and the cue 

characteristic indicating a lower criterion value as a negative cue value. Regression models 

assume that for each cue, the relation between cues and criterion is abstracted and explicitly 

represented as a cue weight; the judgment is then made by summing the weighted cue values 

(Cooksey, 1996; Doherty & Brehmer, 1997). Linear regression has been successfully applied 

to analyze judgments in many areas, such as clinical diagnostics (e.g., Harries & Harries, 

2001), legal and medical decision making (Ebbesen & Konecni, 1975; Wigton, 1996), and 

personality evaluations (e.g., Zedeck & Kafry, 1977; for a review, see Brehmer & Brehmer, 

1988).  

However, even though linear additive models can capture human estimations quite 

well, in a linear environment, where the criterion is a linear function of the cues, they provide 

a less good description if the criterion is a nonlinear function of the cues (von Helversen & 

Rieskamp, 2008; Karlsson et al., 2008; Olsson et al., 2006). Further, regression models have 

been criticized for being “as if” models that often can describe the outcome of a decision but 

not capture the cognitive process underlying it (Gigerenzer & Kurz, 2001). In response to this 

criticism, von Helversen and Rieskamp suggested an alternative rule-based model, which they 

called the mapping model. This model can capture estimations in nonlinear environments.  

The Mapping Model 

The mapping model assumes a rule-based estimation process. Accordingly, people 

estimate the criterion value of an object by first categorizing the object and then assigning a 
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typical criterion value of past objects falling into the same category as the estimate. The 

categorization process follows a simple rule, counting the number of relevant cues with a 

positive value. Each number of positive cue values constitutes a category. For example, when 

estimating the price of a house, the mapping model assumes that people consider the features 

of the house that favor a high price (e.g., great location, nice garden, a swimming pool). Then 

the number of positive features is used to categorize the house into a certain price class and 

the typical price for houses within this price class is used as an estimate.  

The estimation process assumed by the mapping model is inspired by the framework 

for quantitative estimation developed by Brown and Siegler (1993). Brown and Siegler 

proposed that two types of information are necessary for an estimation: knowledge about the 

mappings, that is, the ordinal relation of the objects according to the criterion of interest; and 

knowledge about the metrics, that is, the numeric properties of the objects, such as the 

distribution, the range, or the mean of possible estimates. Both properties are necessary for an 

accurate estimation but are based on different sources of knowledge. The mapping model 

provides a computational account of Brown and Siegler’s framework for estimation: In a first 

step, knowledge about the mappings is inferred from the cue values by counting the number 

of positive cue values and grouping objects together according to their cue sums. In a second 

step, knowledge about the metric properties is derived by abstracting a typical estimate for 

each category, represented by the median criterion values of the objects falling into the same 

category.  

By categorizing objects according to the sum of positive cues, the mapping model 

assumes that all considered cues are weighted equally. Although counterintuitive at first 

glance, this assumption is based on robust findings showing that using varying weights for 

cues does not necessarily increase a model’s predictive power (e.g., Dawes, 1979; Einhorn & 
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Hogarth, 1975; Hogarth & Karelaia, 2005) and that tallying models often provide a good 

description of human judgment processes (e.g., Bröder & Gaissmaier, 2007). However, it is 

important to note that the mapping model, in contrast to a unit weight regression model, 

allows the estimation of nonlinear cue–criterion relations, as the typical criterion values for 

each category are based on a central tendency of past objects.
1
 Further, empirical results on 

the mapping model have shown that it predicts estimations in a variety of task environments 

quite well (von Helversen & Rieskamp, 2008). However, Juslin et al. (2008) recently 

proposed exemplar models as a competing account for nonlinear judgment tasks.  

The Exemplar Model 

In contrast to the mapping model, the exemplar model assumes a similarity-based 

process, according to which people estimate the criterion of an object by retrieving the 

criterion values of similar exemplars in memory. For example, when estimating the price of a 

house, the exemplar model assumes that people recall the selling prices of similar houses that 

were sold in the vicinity and use them to estimate the selling price for the house under 

evaluation. Exemplar models have been successfully employed to explain human behavior in 

categorization (Juslin et al., 2003; Kruschke, 1992; Nosofsky & Johansen, 2000). For 

categorization problems people classify objects into one of two or more categories based on 

the objects’ features. Although categorization and quantitative estimation problems have a 

similar structure—the main difference being that estimations ask for a continuous judgment, 

while categorizations ask for a binary judgment—they have been studied by two different 

research traditions. For categorization problems similarity-based models such as exemplar or 

prototype models have predominantly been proposed, while for estimation problems linear 

additive models have been suggested. Only recently, connections between the two research 

fields have been established (e.g., Juslin et al., 2003) and exemplar models have been 



RULE- AND EXEMPLAR-BASED ESTIMATION PROCESSES 8 

extended to the area of quantitative estimation (Juslin et al., 2003, 2008; Karlsson et al., 2007; 

Olsson et al., 2006). We think it is a fruitful approach to examine how cognitive models that 

have been proposed for one judgment domain can be generalized to another. When 

elaborating the connections between the research domains, the empirical findings from one 

domain, such as categorization, will be informative for our understanding of the cognitive 

process underlying judgments in another domain, such as quantitative estimation.  

In general, exemplar models assume that estimations rely on the similarity of an 

object to previously encountered objects that are stored in memory. When applying exemplar 

models to estimation, it is assumed that previously encountered exemplars are activated and 

compared to the probe, that is, the object under evaluation. The more the probe resembles an 

activated exemplar, the closer the estimate for the probe will be to the exemplar’s criterion 

value. More specifically, the estimate consists of the average criterion values of the activated 

exemplars, weighted by their similarity to the probe:  
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For each cue j it is determined whether the cue values of the probe p and the stored 

exemplar i match. If they match, d equals one, and if they do not match, d equals the attention 

parameter sj, which captures the impact of a cue on the overall similarity and varies between 

zero and one. The closer sj is to zero, the more important the cue. If sj = 1, this implies that 

the cue j is irrelevant for the evaluation of the overall similarity. The original exemplar model 

assumes a separate sj parameter for each cue j (Juslin et al., 2003; Medin & Schaffer, 1978). 

However, as the original exemplar model seems to be prone to overfitting, we additionally 

considered a simplified version with one single attention parameter s for all cues (von 

Helversen & Rieskamp, 2008). In this case, s is an attention parameter indicating how closely 

a retrieved exemplar needs to resemble the probe to be considered for the estimation. The 

closer s is to zero, the more similar an exemplar has to be to the probe so that it has an impact 

on the estimation. 

The above describe exemplar model illustrates how a model from the categorization 

domain is applied to the estimation domain. Naturally, exemplar models are not the only 

models that have been proposed for categorization processes. Another prominent approach to 

categorization is represented by prototype models. Prototype models assume that each 

category can be represented by one single prototype and that objects are categorized by their 

similarity to the prototype. It is an interesting question how and to what extent prototype 

models could be applied to the estimation domain. However, because it is not obvious how 

several components of prototype models could be specified for estimation problems, we 

consider this generalization as a research project on its own to be tackled in future research.  

Model Environment Contingency 

Both the exemplar model and the mapping model provide new and successful 

modeling approaches to quantitative estimation. However, both models were proposed to 
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explain estimation processes in nonlinear estimation environments. Furthermore, two 

previous experimental studies led to rather conflicting result regarding which model provided 

a better account of observed estimations. In the third experimental study reported by von 

Helversen and Rieskamp (2008), the mapping model clearly outperformed the exemplar 

model in predicting participants’ estimations. In contrast, a reanalysis of the first experiment 

of Juslin et al. (2008) as reported in von Helversen and Rieskamp revealed an advantage of 

the exemplar model over the mapping model in predicting estimations. Although the cover 

stories of the estimation problem differed, the structures of the two studies were very similar: 

In both studies, participants estimated a continuous criterion based on multiple dichotomous 

cues. The criterion was a multiplicative function of the cues, and the participants received 

outcome feedback to learn the task. However, the tasks differed in two aspects. First, in the 

study by Juslin et al. the training set was smaller and less complex and participants received 

twice as much training. Second, in the study by von Helversen and Rieskamp participants 

were informed about the direction of the cues, that is, which cue values indicated a high or a 

low criterion value. In contrast, in the study by Juslin et al., participants needed to learn the 

directions of the cues. Following the assumption that human cognition can be understood as 

an adaptation to different environments (Ashby & Maddox, 2005; Gigerenzer & Todd, 1999; 

Payne, Bettman, & Johnson, 1993; Rieskamp, 2006; Rieskamp & Otto, 2006), we propose in 

this article that the conflicting results found by von Helversen and Rieskamp (2008) can be 

explained by linking the characteristics of the task to the assumptions the models make about 

the estimation process. More specifically, we will first examine exemplar memory, that is, the 

ability to accurately store and activate previously encountered exemplars. Exemplar memory 

could be affected by the number of exemplars and the frequency with which the exemplars 

are encountered and consequently could influence whether an exemplar-based estimation 
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processes becomes more likely. Second, we will investigate prior knowledge about the 

estimation task. Rule-based models require knowledge abstraction, that is, the knowledge that 

needs to be abstracted to execute a specific estimation process. Prior knowledge about an 

estimation task could make this abstraction process easier and thereby foster a rule-based 

estimation process that requires specific abstracted knowledge.  

Exemplar memory. Exemplar models assume the activation of previously encountered 

exemplars from memory. If an individual is able to activate encountered exemplars easily and 

accurately, then relying on an exemplar-based estimation process should be accurate and 

might even become cognitively less demanding than a rule-based process. Due to these 

reinforcements an exemplar-based estimation process could become more likely. Research on 

list learning has shown that recognition and recall improve (1) the fewer the items to be 

learned and (2) the more frequently they are repeated during training (e.g., Gillund & 

Shiffrin, 1984). Similarly, a lower number of training exemplars and a higher frequency of 

repetitions of exemplars could foster an exemplar-based estimation process and consequently 

increase the accuracy of exemplar models in predicting people’s estimations.  

In this vein, in the area of categorization it has been suggested that exemplar-based 

processes are more prevalent for small categories with few dimensions and easily 

distinguishable exemplars (Ashby & Ell, 2001; Minda & Smith, 2001; Rouder & Ratcliff, 

2006). Similarly, Homa, Proulx, and Blair (2008) proposed that more exemplars in a category 

lead to the abstraction of prototypes while categories with fewer exemplars trigger exemplar-

based processes. Similar to prototype models, the mapping model assumes a high degree of 

abstraction: Instead of memorizing exemplars with all their feature values, memory load is 

reduced to category membership, making it less sensitive to the number of training 

exemplars. Thus, while a low number of training exemplars might foster an exemplar-based 
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process, a large number of training exemplars might—analogous to the prototype abstraction 

process assumed for large categories (Homa, Dunbar, & Nohre, 1991; Homa et al., 2008)—

favor a rule-based estimation process as described by the mapping model. Accordingly, the 

mapping model should predict estimations better than the exemplar model in a situation with 

a large number of training objects in comparison to a situation with a smaller number of 

training objects. This exemplar memory prediction will be tested in Study 1.  

However, the proposed relation between exemplar memory, that is, the effect of 

category size and frequency of exemplars on the reliance on exemplar-based processes, has 

been contended by proponents of exemplar theory and is widely discussed in the literature 

(e.g., Knowlton & Squire, 1993; Nosofsky, 1988a, 1988b; Nosofksy & Zaki, 1998; Shin & 

Nosofsky, 1992). In particular, multiple trace approaches to exemplar memory—although 

they assume that the probability and accuracy with which an exemplar is recognized increases 

with the frequency of presentation (Hintzman, 1988)—would not necessarily expect that the 

number of training exemplars affects the judgment process. Smith and Minda’s (1998; Minda 

& Smith, 2001) results of examining the effect of the number of training exemplars on 

exemplar-based processes have also been challenged by various researchers (Nosofsky & 

Zaki, 2002; Olsson, Wennerholm, & Lyxzen, 2004; Zaki, Nosofsky, Stanton, & Cohen, 

2003). In sum, there are mixed findings and views in the area of categorization processes 

about whether the ability to retrieve exemplars has an impact on the categorization process. 

More crucially, its role in the area of quantitative estimations has not been considered 

systematically at all, which is a novel contribution of our research. The ongoing debate 

suggests that it is worthwhile to consider exemplar memory as a possible factor influencing 

estimation processes. 
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Prior knowledge. Differences in the availability of task knowledge could also explain 

the diverging results reported by von Helversen and Rieskamp (2008) and Juslin et al. (2008). 

While the exemplar model might rely on accurate storage and activation of encountered 

exemplars, the mapping model requires the abstraction of explicit task knowledge. In general, 

rule-based processes, such as the one described by the mapping model, require specific 

knowledge about the judgment task, which is then represented in an abstract, explicit form. 

For instance, when applying a rule for categorization the rule needs to abstract thresholds that 

allow accurate categorizations (e.g., Ashby et al., 1998; DeCaro, Thomas, & Beilock, 2008) 

and are then explicitly accessible. Ashby and colleagues showed that rule-based 

categorization processes were primarily followed when the stimulus dimensions were 

separable. However, if the stimuli were integral, similarity-based processes were relied upon. 

This suggests that the ease with which an individual can abstract necessary knowledge when 

encountering the judgment task could affect the likelihood with which a rule-based process 

will occur. In particular, prior knowledge about a task should make a rule-based process that 

requires this knowledge more likely. 

In the third experimental study of von Helversen and Rieskamp (2008) participants 

were informed about the directions of the cues, providing explicit, verbally accessible 

knowledge about the estimation task. However, in the study by Juslin and colleagues (2008), 

no prior information about the cues was given to the participants, making it more difficult to 

gain knowledge of the cue directions. For the mapping model, abstracting knowledge about 

the predictability and the directions of the cues is crucial to grouping objects into meaningful 

categories. Thus, if prior knowledge about the cue directions exists, this could foster rule-

based processing consistent with the mapping model, as participants do not need to invest 

resources into learning the relationship between the cues and the criterion and can quickly 
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achieve a good level of performance. In contrast, the exemplar model, relying on the 

similarity relations of the objects, does not depend on knowledge about the cue directions but 

can be applied successfully as long as objects are sufficiently differentiable (although it also 

needs to learn which cues are relevant). In particular, if cue directions are difficult to learn, it 

might be more demanding to gain knowledge about the cue directions, needed to sort the 

objects into the correct categories, than to rely on exemplar memory. Therefore, if no prior 

knowledge about the cues exists, this could trigger exemplar-based processing. 

In sum, rule-based estimation processes as described by the mapping model rely on 

the abstraction of knowledge about the cues and should profit more than exemplar-based 

processes from prior knowledge about the task, such as information about the cues’ 

directions. From this, the prior knowledge prediction follows: rule-based processes should be 

more likely observed when the necessary knowledge is easily attainable. In contrast, the 

exemplar-based processes seems to be particularly suited to capturing the estimation process 

when it is difficult to abstract knowledge about the task necessary for a rule-based process, 

but the memorized exemplars allow an accurate estimation performance (see also Olsson et 

al., 2006). We tested these predictions in two studies, manipulating the exemplar memory as 

well as the access to prior knowledge about the cues. 

Methods of Model Selection and Qualitative Tests of Models 

Model selection can be a challenging task. For one thing, model complexity needs to 

be taken into account: More complex models are better in fitting data but they run the risk of 

overfitting; that is, they not only capture systematic variance but also fit unsystematic 

variance in the data. Another challenge is that models often make very similar predictions, 

making it difficult to devise tests that reliably differentiate between the models.  
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We addressed the problem of model selection with a twofold approach. First, we 

compared the models on the basis of a generalization test (Busemeyer & Wang, 2000). 

Generalization tests follow the rationale that if a model captures the cognitive process 

underlying estimations then this model should also predict new independent estimations 

better than alternative models that do not capture the cognitive process. They not only allow a 

fair comparison of models of different complexity but go beyond a pure cross-validation test, 

providing a rigorous model-selection method. We implemented the generalization test by first 

estimating the models’ parameters using the data of a training phase and then using the 

estimated parameter values to predict participants’ estimations for new test objects.  

Second, we devised a qualitative model comparison test. Qualitative tests are 

preferable to purely quantitative model tests (Pitt, Kim, Navarro, & Myung, 2006). They are 

less dependent on specific parameter values and they provide a critical test of the model 

assumptions, providing information about the correspondence of the pattern in the data with 

model predictions. Therefore, we aimed to find qualitative predictions that were specific for 

each model and could not be derived from the competing model.  

For this purpose we focused on the assumptions the models make about which objects 

should be treated similarly and for which objects the estimations should differ. The mapping 

model groups objects according to their cue sums, ignoring which specific cues have a 

positive value. This implies that the model makes the same estimations for all objects with the 

same cue sum, whereas estimations for objects with different cue sums will differ. The 

exemplar model, on the other hand, relies on the similarity relations of the objects to the 

stored exemplars. Thus two objects that are maximally different should also differ in which 

exemplars they resemble and thus in the criterion values estimated. We used these 
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assumptions of the models to design qualitative model comparison tests in addition to the 

quantitative model comparison tests.  

Study 1 

The goal of Study 1 was to investigate the influence of exemplar memory on model 

performance for quantitative estimations. This seems to be an important question, as the role 

of an accurate representation of exemplars in memory has been proposed as a potentially 

important factor influencing categorization processes but has not been considered at all for 

the area of quantitative estimations. Moreover, when comparing the different models we go 

beyond the pure quantitative tests provided by von Helversen and Rieskamp (2008) and test 

models against each other by focusing on qualitative criteria, which should allow a better 

discrimination between the models.  

In the multiple-cue estimation task of the experimental study the participants 

evaluated job candidates based on six cues. In a training phase participants were presented 

with a number of candidates and the evaluations they had received. Based on this training 

sample they could learn how their company evaluated job candidates. In a subsequent test 

phase, we tested how well they generalized this knowledge to new job candidates and which 

model was best in predicting their evaluations. Study 1 focused on the exemplar memory 

prediction described above. Accordingly, we manipulated the number of training objects in 

two experimental conditions, examining whether less reliance on exemplar-based processes in 

favor of a rule-based process as described by the mapping model could be observed with a 

larger number of training objects.   

Method 

Participants. In Study 1, 40 participants took part, 20 in each condition. The majority 

of participants were students from one of the Berlin universities, with an average age of 24 
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years (SD = 4); 30% of the participants were male. Participants were randomly assigned to 

one of the experimental conditions, balanced for gender. The study lasted for about 1 h 45 

min and participants were paid an average of 16 for their participation. One participant in 

the condition with a small number of training exemplars was excluded from the analysis as he 

did not improve in evaluating the training candidates during the training phase. 

Procedure and material. The study was conducted as a computer-based experiment. 

The task of the participants was to evaluate the quality of job candidates for an Information 

Technology (IT) position on a scale of 1 to 100 points. The more points a job candidate 

received the more suited he or she would be for the position. Participants received 

information about the job candidates on six dichotomous cues. The six cues and their 

characteristics were knowledge of programming languages (C++ vs. Java), knowledge of 

foreign languages (French vs. Turkish), additional skills (SAP, a software system, vs. web 

design), previous work experience (software development vs. system administration), 

previous employment area (business vs. academia), and knowledge of operating systems 

(UNIX vs. Windows).  

Participants were told which of the two possible characteristics of the cues matched 

the company’s needs; characteristics that matched the company’s preferences were marked in 

green, while characteristics that did not meet the company’s requirements were marked in 

red. During training participants learned how many points job candidates with different 

combinations on the six cues should receive. The criterion, that is, how many points a job 

candidate received, was determined as a multiplicative function of the cue values (von 

Helversen & Rieskamp, 2008; Juslin et al., 2008):  

1 2 3 4 5 6
(22   20   17   15   14   ) / 20

0.68 e
c c c c c c

C
+ + + + + 12

= ⋅ ,      (3) 

where C is the points the job candidate received and c1 to c6 are the values on the six 
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dimensions. A positive characteristic of a cue was coded with a cue value of 1 and a negative 

characteristic was coded with a cue value of zero. The assignment of the weights to the cues, 

which characteristic of a cue was coded as positive or negative, as well as the order of the 

cues on the screen were randomly determined for each participant.  

The study consisted of two parts, a training phase and a test phase. During the training 

phase participants could learn the company’s evaluation policy by judging job candidates. In 

each trial participants were asked to evaluate one job candidate. After each trial they received 

feedback about the number of points this candidate should receive, how close their estimate 

had been, and how many points they earned in this trial (see below). Then the next candidate 

appeared. All training candidates were repeated 10 times, structured in 10 blocks; the order of 

appearance in each block was randomly determined.  

We manipulated the number of training candidates in this study: In one condition the 

training set consisted of a large number (24) of different training candidates; in the other 

condition the training set comprised a small number (8). After the training phase participants 

continued with a test phase in which they had to evaluate 30 more job candidates. The test 

phase was similar to the training phase, with the difference that participants did not receive 

immediate feedback about the accuracy of their evaluations and only learned how many 

points they had earned after they had finished the test phase. The 30 test candidates were 

evaluated twice. Eight of the candidates in the test phase had also appeared during training 

and 22 were new candidates participants had not encountered before.  

Participants’ payment was based on their performance. In each trial participants could 

earn up to 100 points depending on how accurately they estimated the quality of the job 

candidates. The more they deviated from the criterion the fewer points they earned. The exact 

number of points subtracted for a given deviation was calculated with a feedback algorithm, 
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based on the squared deviation from the estimation to the criterion.
2
 After the experiment, 

points were exchanged into euros at a rate of 0.1 for every 150 points.  

Selection of training and test sets. To test which model could explain the participants’ 

behavior best we relied on a generalization test (see Busemeyer & Wang, 2000). Additionally 

we conducted a qualitative test of the models’ assumptions (see Pitt et al., 2006), focusing on 

two qualitative predictions that were derived from the models’ assumptions about the 

estimation process.  

First, according to the mapping model, the same value is estimated for any two objects 

with an equal number of positive cues, regardless of the similarity of the two objects. In 

contrast, if two objects are very dissimilar, that is, if they do not match on a single cue, the 

exemplar model’s estimations should differ. For the experimental task with six cues, an 

estimation situation like this occurs for objects with a cue sum of three. To clarify, for any 

cue profile with three positive and three negative cues (e.g., 111000, with each number 

representing the cue value of one cue), the mapping model makes the same prediction for an 

object with the reversed cue profile (i.e., 000111). In contrast, the exemplar model will most 

likely make different estimation predictions, because these two objects are maximally 

dissimilar.  

Second, we devised an additional experimental situation in which the exemplar model 

and the mapping model made opposite predictions. The mapping model predicts large 

differences between estimates for objects when they have different cue sums, for instance, 

objects with cue sums of 2 and 4. In contrast, for these objects, which necessarily share some 

cue values, the exemplar model can make very similar estimations.  

To summarize, our qualitative test comprised two conditions in which the exemplar 

model and the mapping model made qualitatively different predictions. While the mapping 
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model predicted a difference between the estimations for objects with a cue sum of 4 and a 

cue sum of 2 and no difference for objects with a cue sum of 3, the exemplar model made the 

opposite predictions. However, the strength of the qualitative predictions depends on the 

specific training and test objects. For instance, if all training objects had the same criterion 

value, it would be impossible to differentiate between the models. Accordingly, we aimed at 

selecting training set–test set combinations where the qualitative predictions of the two 

models would differ as widely as possible, but we made sure that the test set would well 

represent the total set. The test set for the condition with a large training set is reported in 

Table 1. For the training sets, the test set of the condition with eight objects, and details on the 

procedure used to select the training and test sets, please see Appendix A.  

Finally, we explored the prediction of the models for the models’ parameter space, to 

determine the range of parameter values for which the models make qualitatively different 

predictions. For the mapping model this is a simple task because it has no free parameters, so 

it makes one single prediction for a specific object. In contrast, the exemplar model’s 

predictions depend on its values for the attention parameter.
3
 We covered the parameter space 

of the attention parameter s by using the values .001, .1, .2, .5, .7, and .9. Figure 1 illustrates 

how the predictions of the exemplar model change with increasing parameter values. With 

small parameter values a clear difference in the qualitative predictions of the models can be 

observed. The small values for the attention parameter of the exemplar model are most 

plausible, because they are exactly the ones von Helversen and Rieskamp (2008) found to be 

the best estimates for the exemplar model (i.e., the average estimated parameter values varied 

between .001 and .17; see also Juslin et al., 2008, for similar low parameter estimates for the 

standard exemplar model). Thus, when assuming small attention parameter values that 

perform best in predicting participants’ estimations, the two models make distinct ordinal 
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predictions. Moreover, the results show that over the whole range of parameter values, the 

models’ predictions do not overlap and that even for parameter values for which the exemplar 

model predicts the same ordinal data pattern as the mapping model, strong quantitative 

differences are to be expected.  

Results 

Overall, the mapping model predicted participants’ estimations significantly better 

than the exemplar model in both conditions. The advantage of the mapping model was higher 

in the condition with a small number of training objects than in the condition with a large 

number of training objects, indicating that contrary to the exemplar memory prediction the 

number of training exemplars does not lead to a more rule-based estimation process. 

However, before we come to the model comparisons, we first report participants’ accuracy. 

Participants’ accuracy. Participants learned to evaluate the training candidates fairly 

well in both conditions. We measured the participants’ accuracy via the root mean square 

deviation (RMSD) between the criterion values and the participants’ estimations. In the 

condition with a large number of training objects RMSD dropped from 15.56, SD = 5.62 in 

the first block to 3.86, SD = 2.07 in the 10th block. Similarly, the RMSD in the condition with 

a small number of training objects dropped from 22.97, SD = 6.76 in the first block to 3.04, 

SD = 4.04 in the 10th block. Because the participants’ performance as well as the model fits 

were not normally distributed we used nonparametric tests (the Mann–Whitney U-test for 

independent samples and the Wilcoxon Z-test for paired samples) throughout the article. The 

participants’ accuracy in the test phase did not differ between the two conditions, RMSDlarge = 

5.84, SD = 1.87 versus RMSDsmall = 7.42, SD = 3.39; U = 137, p = .14. However, in both 

conditions, accuracy in the test phase was worse than in the training phase, RMSDtraining = 

3.98, SD = 2.32 versus RMSDtest = 6.61, SD = 2.80; Z = −4.16, p < .01. Participants were 
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more accurate in the test phase in estimating the old objects known from the training phase 

than the new objects, RMSDold = 4.49, SD = 6.10 versus RMSDnew  = 6.69, SD = 2.21; Z = 

−3.99, p < .01.  

Overall, participants were quite consistent in their estimations. Consistency was 

measured as the Pearson correlation between the first and the second presentation of the test 

objects. In both conditions consistency was similarly high, rlarge(20) = .95, SD = .06 versus 

rsmall (19) = .94, SD = .06; U = 137, p = .14. Overall, participants were more consistent in 

estimating old objects than new objects, rold = .98, SD = .05 versus rnew = .85, SD =.15; Z = 

−4.88, p <.001. 

Model parameters. To test which model predicted participants’ estimations best, we 

first fitted both models on the last blocks of the training phase for each participant 

individually. In the condition with a large number of training objects we used the last three 

blocks and in the condition with a small number of training objects the last four blocks to fit 

the models on a sufficient number of training objects. Based on the parameters estimated we 

made predictions for the test phase. Goodness-of-fit was determined as the RMSD of the 

model prediction from the participants’ estimations. For the exemplar model we fitted two 

versions: the standard exemplar model with a free attention parameter for each cue and the 

simplified exemplar model with a single free parameter. The exemplar model’s parameters 

were estimated by using participants’ estimations for the last blocks of the training phase with 

a knowledge base consisting of the objects from the training phase with their correct criterion 

values. The best values for the model’s free attention parameters were found by a grid search 

followed by a nonlinear least square method (as implemented in MATLAB). For the mapping 

model no parameters needed to be estimated. We simply calculated the typical criterion value 
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(i.e. the median) for all objects of the training set with the same cue sum (using the correct 

criterion values of the objects).  

In addition to comparing the exemplar model and the mapping model, we also tested 

further linear additive models to rule out that they predicted participants’ behavior better. 

More specifically, we included a multiple linear regression model (Brehmer, 1994; von 

Helversen & Rieskamp, 2008; Juslin et al., 2008) and a simpler unit weight model (Dawes, 

1979). Lastly, one might object that a complex model such as the standard exemplar model 

might be at a disadvantage in a generalization test, because its parameters are estimated on a 

training sample that differed from the test sample. Although we do not agree with this 

objection, because a model should be able to make worthwhile predictions for new 

independent estimation situations, we additionally conducted a cross-validation test. The 

results of this test were consistent with the main generalization test and its results are reported 

in Appendix B.  

Quantitative model comparison. In the training set both models described participants’ 

estimations fairly well (for means see Table 2). For the training phase the standard and the 

simplified exemplar model performed better than the mapping model in both conditions 

(mapping vs. simplified exemplar model: Zsmall = −2.20, p = .03; Zlarge = −3.21, p < .01) and 

the linear additive models (regression vs. simplified exemplar model: Zsmall = −3.83, p < .01; 

Zlarge = −3.92, p < .01). However, the better fit of the exemplar model during training can be 

explained by its higher flexibility due to its free parameter(s) and should not be decisive for 

model selection. The crucial test is how well the models predict participants’ estimations in 

the test phase for the new objects they did not encounter during training.  

Here, the mapping model was clearly the best model, outperforming the other models 

in both conditions. In the condition with a large number of training objects it reached a RMSD 
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of 5.87, SD = 2.32, compared to the simplified exemplar model with a RMSD of 15.45, SD = 

2.37; Z = −3.92, p < .01 or the standard exemplar model with a RMSD of 16.88. Also in the 

condition with a small number of training objects the mapping model (RMSD = 5.74, SD = 

3.52) was clearly superior to the exemplar model (RMSDsimplified = 22.63, SD = 1.82; Z = 

−3.82, p <.01; see also Table 2). The mapping model also outperformed both linear additive 

models (the regression model: Zlarge = −3.92, p <.01 and Zsmall = −3.82, p <.01; and the unit 

weight model: Zlarge = −3.92, p <.01 and Zsmall = −3.82, p <.01). In general, the rule-based 

models performed better than the exemplar models. In the condition with the large number of 

training objects the regression model was the second best model; in the condition with the 

small number of training objects the unit weight model was second best.  

Qualitative model comparison. Though the quantitative model comparison already 

showed that the mapping model was better at predicting participants’ estimations than the 

exemplar model, we additionally relied on a qualitative test. The qualitative test was designed 

to specifically test the models’ assumptions about the cognitive process underlying 

estimations. As the simplified exemplar model performed better than the standard exemplar 

model we compared the mapping model to the simplified version. To test the models’ 

predictions, we determined for each participant and model the mean difference between the 

estimations for the objects with a cue sum of 2 and 4 and for the pair of objects with a cue 

sum of 3. As expected from the parameter space analysis illustrated in Figure 1, for both 

experimental conditions the models made clearly distinct qualitative predictions, as illustrated 

in Figure 2.  

In the condition with a small number of training objects, the exemplar model 

predicted a small difference of 1.2 points while the mapping model predicted a difference of 

22 points for test objects with cue sums of 2 and 4. In contrast, for the pairs of objects with a 
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cue sum of 3, the mapping model predicted no difference, while the exemplar model 

predicted that estimations would differ by 18.4 points. Although not quite as pronounced, the 

same interaction was predicted in the condition with a large number of training objects. The 

predictions of the mapping model were clearly supported by the data. In both conditions 

participants’ estimations differed strongly for the objects with a cue sum of 4 and a cue sum 

of 2 (Msmall = 18.1 points, SD = 4.5 and Mlarge = 17.2 points, SD = 5.3), close to the difference 

predicted by the mapping model. Likewise, the participants’ estimations for the objects with 

the same cue sum but maximally different cue profiles corresponded to the assumptions of the 

mapping model, Mlarge = 1.3, SD = 2.1 and Msmall = −1.8, SD = 3.2.  

Discussion of Study 1 

Study 1 supported the mapping model in an estimation task with multiple predictive 

cues and a nonlinear cue–criterion relationship. The model predicted well how participants 

estimated values for objects they had not seen during training, obviously capturing the 

process underlying the estimations. Furthermore, it outperformed the exemplar model as well 

as a linear regression. In comparison, the exemplar model performed quite poorly; although it 

was able to accurately describe the estimations during training, it could not predict the 

estimations for the test phase and performed worse than the linear additive models. However, 

although the exemplar model failed to predict estimations for new items, it captured the 

estimations’ for old items quite well, even outperforming the mapping model in the condition 

with a large set of training objects. This could indicate that participants employed different 

strategies for old and new objects, relying on memorization for old objects, but following a 

rule-based estimation process as described by the mapping model for the new objects (for a 

similar discussion see Rehder & Hoffman, 2005). However, the advantage for the exemplar 

model for old items might also be a modeling artifact. Due to its high flexibility the exemplar 
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model was able to fit the estimations very well for the training phase. This good fit is also 

reached by taking inter-individual differences into account, which the mapping model 

ignores. Given the high consistency of participants’ estimations, the estimations in the test 

phase did not differ substantially for the old items and consequently the exemplar model also 

reached a good fit for these items.  

In contrast to the exemplar memory prediction that the exemplar model’s predictions 

should improve with fewer training objects, the model performed worse, U = 5, p <.01. 

However, the implication of these results for this prediction is limited, because the mapping 

model outperformed the exemplar model in both conditions. This indicates that participants 

did not rely on exemplar-based processes in either condition, but that the difference in the 

performance of the exemplar model could also be due to modeling issues, for example, the 

increased chance to average out unsystematic variance with more training instances.  

Thus, overall, the results indicate that the number of training objects is not a crucial 

factor affecting people’s estimation processes. However, the mapping model could have 

outperformed the exemplar model because we provided knowledge about the cue directions. 

Research in categorization has reported strong effects of prior knowledge on cognitive 

processing (e.g. Wisniewski & Medin, 1994). Furthermore, according to the prior knowledge 

prediction, rule-based processes should be more likely to be observed when the necessary 

knowledge is easily attainable. Thus, prior knowledge about the cue directions could have 

triggered rule-based processing in accordance with the mapping model, overriding any effects 

of the exemplar memory prediction.  

On the other hand, even though prior knowledge has been reported to affect cognitive 

processing in categorization (Kaplan & Murphy, 2000), this is much less clear for estimation. 

Furthermore, the exemplar model could solve the task perfectly without knowledge about the 
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cue directions and past research has shown that people often ignore information even if it is 

relevant to the task (e.g. base rate neglect, Tversky & Kahneman, 1994; see also Payne et al., 

1993). Thus, the lack of an effect of the number of training objects could also have been 

caused by too little training. Multiple systems theories of categorization often assume that 

people start with rule-based processes and use exemplar knowledge as a back-up strategy 

(e.g., Karlsson et al., 2008; Nosofsky et al., 1994; Rehder & Hoffman, 2005; Smith & Minda, 

1998). Similarly, Johansen and Palmeri (2002) suggested a representational shift from rule-

based to exemplar-based processes with extensive training, and Rouder and Ratcliff (2006) 

argued that the memorization of complex exemplars might take time and that people might 

rely on rule-based strategies until they have gained enough experience with the exemplars to 

store those that are immune to forgetting and then rely on the more accurate exemplar-based 

strategy. In our study every training object was repeated 10 times, leading to a quite accurate 

performance of the participants in the estimation task. Nevertheless, studies investigating 

exemplar-based approaches often provide more training. For instance, Zaki et al. (2003) 

presented training objects 40 times each and Juslin et al. (2008) presented each object 20 

times. Thus the exemplar memory prediction might only hold when a higher amount of 

training is provided. We conducted Study 2 to examine the relevance of the length of training 

and prior knowledge for cognitive processing for quantitative estimation. 

Study 2 

In Study 1 the participants did not follow an exemplar-based estimation process. In 

Study 2 we addressed two possible reasons for the poor performance of the exemplar model 

in Study 1. Exemplar-based processes might be more likely to occur when extensive training 

is provided (Johansen & Palmeri, 2002). Thus, we increased the training to 20 blocks, similar 

to the study by Juslin et al. (2008). Second, the availability of explicit knowledge about the 
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cues could have primed rule-based processing in Study 1. Because the exemplar model’s 

performance is largely independent of explicit task knowledge, providing no information 

about the cues should create conditions favorable for the exemplar model. However, a shift to 

exemplar-based processing might depend not only on the availability of knowledge, but also 

on the ease with which knowledge can be gained. If picking up the cue directions during 

training is easy, the mapping model could still prevail. In Study 1 (see Table 3) all cues 

correlated substantially with the criterion, which should make it fairly easy to pick up the 

cues’ directions, as learning of contingencies depends to a high degree on the strength of the 

relation (e.g., Brehmer, 1973; see also Hoffman & Murphy, 2006; Klayman, 1988a). 

Therefore, to vary the ease with which the cue directions could be learned, we also 

manipulated how demanding it was to detect the correct directions of the cues. For this 

purpose we created a training set in which only half of the cues were predictive whereas the 

other half were useless for estimating the criterion values. This should increase the difficulty 

of inferring the cues’ directions for predicting the criterion (Brehmer, 1973).  

Method 

Participants. In Study 2, 80 students from one of the Berlin universities participated 

(average age = 25 years, SD = 3); 33% of the participants were male. Participants were 

randomly assigned to one of the four experimental conditions, balanced for gender. The study 

lasted for about 1 h 30 min and participants were paid on average 14 for their participation. 

Design, procedure, and material. In Study 2 we increased the training phase, 

providing twice as many learning trials in comparison to Study 1. In addition, we manipulated 

the prior knowledge about the directions of the cues and the ease with which the cues’ 

directions could be learned with two between-subjects factors in a 2 × 2 experimental design. 

Similar material to Study 1 was used. Again, participants were asked to evaluate the quality 
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of job candidates based on the six binary cues described in Study 1. However, in Study 2 only 

half of the participants were told which cue values were regarded as positive and which as 

negative. The other half needed to discover the cues’ directions during the training phase. 

Additionally, we manipulated how easily the cues’ directions could be learned. One half of 

the participants were provided with the identical set of training objects used in the training 

phase of the condition with eight training objects in Study 1. For this set of training objects all 

cues correlated substantially with the criterion (in all cases r > .35). For the other half of 

participants we used a different set of training objects, so that three cues correlated highly 

with the criterion (r > .5) and three correlated poorly (r < .2). The exact cue–criterion 

correlations are reported in Table 3. The selection of objects for the training and test phases 

for the second condition was achieved in the same way as in Study 1 with the additional 

constraint on the cue–criterion correlations and the exclusion of extreme profiles (with all 

positive or all negative cue values, which had to be excluded to achieve the desired cue–

criterion correlations).  

Similar to Study 1, Study 2 consisted of a training phase and a test phase. The training 

sets in both conditions consisted of eight training exemplars. In comparison to Study 1, we 

increased the duration of the training to 20 trials per candidate, structured in 20 blocks. In 

each block the eight training candidates were presented in a random order. Participants were 

paid contingent on their performance, based on the same feedback algorithm used in Study 1.
4
 

The subsequent test phase consisted of 30 objects with 22 new and 8 old objects that 

participants evaluated twice. The test objects were selected in the same way as in Study 1 to 

allow a qualitative test of the models. The training and test sets are reported in Appendix A 

(Tables A2 and A3). After the test phase, participants who had not been informed about the 

cue directions were asked to indicate which cue values went with higher criterion values.  
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Results 

As in Study 1, the mapping model outperformed the exemplar model when the 

directions of the cues were known to the participants. However, when the cue directions had 

to be learned during training, which model predicted the participants’ estimations best 

depended on the number of predictive cues, that is, cues that correlated substantially with the 

criterion. In the condition in which all cues were predictive, the mapping model was still best 

in predicting the estimations. Only in the condition in which the directions of the cues were 

unknown to the participants and only three cues were predictive did the exemplar model 

outperform the mapping model.  

Participant performance. The participants learned to evaluate the job candidates 

correctly in all conditions, dropping from an average RMSD of 27.31, SD =12.61 in the first 

block to 3.77, SD = 5.90 in the 20th block. However, training accuracy depended on the 

knowledge of the cue directions. Participants were more accurate in their estimations when 

they knew the cue directions (RMSD = 2.07, SD = 2.03) than when they did not (RMSD = 

7.43, SD = 6.79; U = 364, p < .01). If the cue directions were known, participants did better if 

all cues were predictive (RMSD = 1.40, SD = 2.03) than if only half were predictive (RMSD = 

2.75, SD = 1.82; U = 94, p < .01). However, when the cue directions were not known, 

participants performed equally well (RMSDthree predictive cues = 6.11, SD = 4.09 vs. RMSDsix 

predictive cues = 8.74, SD = 8.62; U = 193, p = .86). Overall, participants’ estimation accuracy 

was better for the training phase than for the test phase (RMSDtraining = 4.75, SD = 5.66 vs. 

RMSDtest = 11.82, SD = 5.79; Z = −7.62, p < .01).  

To measure the consistency of participants’ estimations we calculated the Pearson 

correlation between the two judgments of the same objects during the test phase. A similar 

pattern to that found for participants’ accuracy emerged: Participants were more consistent 
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when they knew the cue directions (r = .92, SD = .11) than when they learned them during 

training (r = .81, SD = .17; U = 448, p < .01). When the participants knew the cue directions, 

the number of predictive cues did not matter (rthree predictive cues = .92, SD = .11 vs. rsix predictive cues 

= .92, SD = .10, U = 193, p = .86). However, when the cue directions were learned during 

training, participants were more consistent when all cues were predictive (r = .86, SD = .15) 

than when only three cues were predictive (r = .76, SD = .17, U = 122, p = .04). Overall, 

participants were more consistent in estimating the old objects than estimating the new 

objects (rold = .93, SD = .14 vs. rnew = .79, SD = .22; Z = −5.50, p < .01).  

Knowledge of cue directions. To examine whether our manipulation of the ease with 

which the cue directions could be learned had an effect on the estimations, we compared how 

many mistakes participants made in reporting the correct directions of the cues. As expected, 

participants performed better when all six cues were predictive (i.e., correlated substantially 

with the criterion) than when only three cues were predictive. When all cues were predictive, 

7 (35%) participants indicated for at least one cue an incorrect direction; whereas when only 

three cues were predictive, 14 (70%) participants made at least one mistake. In particular, the 

participants had difficulty in correctly reporting the direction of the low-quality cues (i.e., 

those that correlated only slightly with the criterion), with a total of 16 mistakes in 

comparison to only 8 mistakes with the high-quality cues. 

Quantitative model comparison. As in Study 1 we used the last four blocks of the 

training phase to estimate individually the exemplar models’ attention parameter. We used the 

objects’ correct criterion values in the training phase to determine the median estimates for 

the mapping model’s estimation categories. The categories were formed on the basis of all six 

cues.
5
 In this way we determined the models’ predictions for the new objects in the test phase. 

Model performance was measured as the RMSD between model predictions and participants’ 
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estimations. For the generalization test we focused on the simplified exemplar model, as it 

performed better than the standard exemplar model in Study 1. However, we provide the 

results of a full model comparison including the standard exemplar model, a multiple linear 

regression, and a unit weight model in Appendix B. Additionally we report the results of a 

cross-validation test when different from the results of the generalization test (for details on 

the cross-validation test see Appendix B). 

As in Study 1, the generalization test focuses on how well the two models predict 

participants’ estimations for the new independent objects of the test phase. Table 4 reports the 

mean RMSDs and SDs. Figure 3 shows that in the condition replicating the Study 1 condition 

with a small number of training objects (where the participants knew the cue directions and 

where all cues were predictive), with the only difference being having a larger number of 

training trials, the mapping model again clearly outperformed the exemplar model, Z = −3.92, 

p <.001. Thus, contrary to the exemplar memory prediction, simply having more training did 

not cause the participants to switch to an exemplar-based estimation process. Similarly, when 

the cue directions were known but only half of the cues were predictive, the mapping model 

predicted participants’ estimations better than the exemplar model, Z = −3.92, p < .01. 

Furthermore, the mapping model was still the superior model when the participants had to 

learn the directions of the cues, and all cues were predictive, Z = −2.80, p < .01. However, in 

line with the knowledge abstraction prediction, when the participants needed to abstract the 

directions of the cues during training but only three cues were predictive, making abstraction 

of the necessary knowledge for the mapping model difficult, the exemplar model 

outperformed the mapping model, Z = −3.62, p < .01.  

Overall, the cross-validation test led to similar results. However, the standard 

exemplar model performed better in the cross-validation test (RMSD = 11.92, SD = 4.49) than 
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in the generalization test (RMSD = 21.53, SD = 10.34). In particular, in the condition with six 

predictive cues and no knowledge about the cue directions, the standard exemplar model 

performed as well as the mapping model (Z = −.24, p = .84) in cross-validation, with 9 

participants better predicted by the exemplar model and 11 participants by the mapping 

model. Whether the mapping model outperformed the standard exemplar model depended on 

the participants’ success in learning the cue directions: For 77% of the participants who did 

learn all cue directions correctly, the mapping model predicted the estimations better than the 

standard exemplar model, whereas the mapping model only did better than the exemplar 

model for 14% of the participants who did not learn all cue directions; 
2
 (2, N = 20) = 7.21, p 

= .02.  

Qualitative model comparison. Similar to Study 1, we also tested which of the 

qualitatively different predictions of the two models were in line with the observed 

estimations. Again, we compared the predictions of the exemplar model and the mapping 

model by taking the difference in estimations for the pairs of objects with a cue sum of 3 and 

the objects with cue sums of 2 and 4. For the pairs of objects with a cue sum of 3 the mapping 

model predicted no difference between the estimates whereas the exemplar model predicted a 

large difference. In contrast, for the objects with cue sums of 2 and 4 the mapping model 

predicted a large difference and the exemplar model predicted a small difference.  

Figure 4 shows that the results of the qualitative tests clearly supported the 

quantitative model comparison tests. When the participants knew the cue directions, their 

estimations were in line with the mapping model’s predictions. Similarly, when the 

participants did not know the cue directions, but all cues were predictive, the participants 

showed a similar pattern to that predicted by the mapping model. Only in the condition in 

which the participants did not know the cue directions and only three cues were predictive 
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was the qualitative pattern of the estimations consistent with the exemplar model’s 

predictions. 

Discussion of Study 2 

Study 2 confirmed the prediction that a rule-based process as described by the 

mapping model depends on gaining accurate knowledge about the cue directions, which is not 

necessary for the exemplar model. In the two conditions in which participants were told 

which cue values were regarded as positive evidence, the mapping model was clearly better in 

explaining participants’ behavior. However, when the participants had to learn the cue 

directions during training and when this was difficult, because only three cues substantially 

correlated with the criterion, the exemplar model was the superior model. These results are 

consistent with the results reported by von Helversen and Rieskamp (2008) and Juslin et al. 

(2008) and shed light on why the authors had found support for the mapping model in one 

study but in another the exemplar model was superior.  

Although the mapping model clearly outperformed the exemplar model in the 

generalization test in both conditions in which all cues were predictive, it should be noted that 

the mapping model predicted the estimations worse when the participants learned the cue 

directions than when the participants were informed about the directions. This result is partly 

attributable to some participants who failed to learn the cue directions. The cross-validation 

test suggests that these participants relied on an exemplar-based approach, while participants 

who learned the cue directions were better described by the mapping model.  

General Discussion 

Past research has proposed that multiple distinct processing systems control human 

cognitive behavior. Which system wins out depends on the structure of the task (e.g., Ashby 

et al., 1998; Juslin et al., 2008). For instance, explicit, rule-based processes are assumed to be 
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constrained to tasks in which stimulus dimensions are separable and can be selectively 

attended to, while implicit, similarity-based processes catch on if the stimulus dimensions are 

integral (Ashby et al., 1998).  

Following up on this line of research, our goal was to specify under which conditions 

two recent models of quantitative estimation, the mapping model (von Helversen & 

Rieskamp, 2008) and an exemplar model (Juslin et al., 2003, 2008), capture the cognitive 

processes in quantitative estimations. We derived the exemplar memory prediction and the 

knowledge abstraction prediction on theoretical considerations of the models’ assumptions 

about the cognitive process to investigate the link between cognitive processing and task 

characteristics. Assuming that for the exemplar model the accurate storage and retrieval of 

exemplars influences performance while for the mapping model the establishment of 

knowledge about the cue directions should be crucial, the knowledge abstraction prediction 

assumes that the mapping model describes estimations well when knowledge about the task is 

available or can be easily gained during the task. In contrast, according to the exemplar 

memory prediction an exemplar-based process might be triggered when the stimulus material 

allows the accurate storage and retrieval of training exemplars (Ashby & Ell, 2001; Rouder & 

Ratcliff, 2006). Overall, the results provided clear evidence for task-contingent cognitive 

processes in accordance with the knowledge abstraction prediction. The mapping model 

performed best when the participants were informed about the cues’ directions or could learn 

them during training. However, when abstracting knowledge about the cues was difficult but 

exemplar memory could be used for accurate estimation, the exemplar model was best in 

predicting participants’ estimations. This task contingency between two different cognitive 

processes could be the result of a learning process reinforcing the reliance on the respective 

process (Erev & Barron, 2005; Rieskamp, 2006, 2008; Rieskamp & Otto; 2006). However, 
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we did not find evidence to support the exemplar memory prediction. In the following we will 

discuss the relevance of establishing accurate knowledge abstraction and exemplar memory 

for quantitative estimations in more detail.  

Exemplar Memory: Number of Training Trials and Number of Objects 

In categorization research the question of whether the accuracy with which exemplars 

can be encoded and retrieved influences cognitive processing has been widely discussed. 

Some research suggests the reliance on rule-based processes or the abstraction of prototypes 

with large number of exemplars (e.g., Ashby & Ell, 2001; Homa et al., 2008). Similarly, it 

has been argued that participants might start with testing simple rule-based strategies early in 

training but later fall back on exemplar-based processing (Johansen & Palmeri, 2002; 

Karlsson, et al., 2008; Rehder & Hoffman, 2005; Rouder & Ratcliff, 2006). However, other 

results suggest that the performance of exemplar models is widely independent of the number 

of training exemplars and the frequency with which exemplars are encountered (e.g., 

Nosofsky, 1988a, 1988b; Nosofsky & Zaki, 1998).  

The results of Study 1 show no effect of the amount of training or the number of 

training exemplars on cognitive processing. However, these results might be limited to 

situations with available task knowledge. In Study 1 participants were informed about the cue 

directions, which apparently strongly influenced the cognitive processing. In sum, our results 

suggest that in situations in which sufficient knowledge is provided about the task structure 

people rely on a rule-based estimation process and not on an exemplar-based process even if 

an exemplar-based strategy could provide a more accurate solution. However, it is not clear if 

exemplar-based processes might become reinforced by an increased amount of training and a 

smaller number of training instances, when only little knowledge is available about the task 

structure.  



RULE- AND EXEMPLAR-BASED ESTIMATION PROCESSES 37 

Prior Knowledge  

Providing explicit knowledge about the cue directions led to a strong effect on the 

estimation process. The mapping model clearly suffered when participants were not informed 

about the cue directions prior to the task. Furthermore, in the two conditions in Study 2 in 

which participants had no prior knowledge, the participants performed worse during training, 

indicating that if knowledge about the task needs to be acquired during training, learning can 

be impeded (for similar effects of prior knowledge see, e.g., Hoffman, Harris, & Murphy, 

2008; Muchinsky & Dudycha, 1975).  

However, the exemplar model was only better in predicting participants’ estimations 

when just a subset of the cues substantially correlated with the criterion. This suggests that 

lacking knowledge about the cue directions was not sufficient to trigger exemplar-based 

processing, but that the accuracy and difficulty with which rule-based estimation processes 

could be employed played an important role when exemplar-based processing occurred (see 

also Ashby et al., 1998; Juslin et al., 2008; Olsson et al., 2006).  

The condition with no prior information about the cue directions and only three 

predictive cues provided especially problematic circumstances for the mapping model, 

because it affected two of its core assumptions. First, the mapping model requires that 

accurate knowledge about the cue directions be gained. This was difficult to achieve, as no 

information about the cues was available and the cue directions were difficult to pick up. 

Second, the mapping model assumes that all cues are equally important. This suggests that it 

should be the better model if cues have similar validities. However, in this task, in fact, only 

three cues were substantially correlated with the criterion. Thus, if participants learned to 

ignore the less valid cues (Castellan, 1973; Klayman, 1988b), the mapping model should not 

be able to predict their estimations accurately.   
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This raises the question of why the mapping model performed well when only three 

cues were predictive and information about the cue directions was available. The good 

performance of the mapping model in this condition indicates that participants regarded all 

cues as equally important for making the estimations, which in turn implies that the 

participants did not accurately learn the task structure. In fact, to improve their estimation 

accuracy it would have been advantageous to use only the predictive cues for an estimation. 

Apparently, providing the participants with explicit knowledge about the direction of the cues 

led to the inference that all cues were relevant to predict the criterion and thereby triggered a 

rule-based process consistent with the mapping model.  

However, it needs to be noted that we only considered an exemplar model that did not 

make any use of the prior knowledge concerning the cues’ directions. It could be that the 

estimations were based on an exemplar process that used the available prior knowledge. The 

categorization literature has illustrated that prior knowledge can affect cognitive processing 

during learning and categorization (Hoffman et al., 2008; Wisniewski & Medin, 1994). Thus, 

it is possible that the exemplar model failed in our studies because it did not include a 

mechanism to represent prior knowledge. However, the good performance of the mapping 

model even in situations in which prior knowledge about the cue directions was not given, but 

could easily be acquired, speaks against this conclusion. In contrast, according to the 

exemplar model it should make no difference how easily the cue directions can be learned. 

This suggests that the ease with which the models could be applied influenced the cognitive 

processing. In sum, the conclusions we have drawn about a rule-based versus an exemplar-

based processing are limited to the models we have used. In particular, we have applied a 

standard exemplar model to predict the estimations. More specific exemplar model that make 

use of prior task knowledge, such as the KRES model for categorization (see Rehder & 
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Murphy, 2003), could of course provide better accounts of estimations process, but the 

development and test of such models for estimation problems should be tackled in future 

research. 

Quantitative Model Comparison: Generalization Test Versus Cross-Validation 

In this article we relied on two quantitative model-comparison methods: a 

generalization test and a cross-validation test. The results of both tests mostly supported the 

same conclusions. However, there were some differences between the tests worth discussing. 

For one, the exemplar models performed worse in the generalization test than in the cross-

validation test. In particular, the standard exemplar model failed in the generalization test, in 

which it performed worse than the simplified exemplar model. It is possible that the 

generalization test provides a stronger test of the theories than a cross-validation test: Both 

tests assume that the cognitive process is the same for the calibration set that is used to 

estimate the models’ parameters and the validation set that is used to test the models’ 

predictions. However, in the case of the generalization test, the calibration and the validation 

set are not random samples. Therefore in a generalization test the poor accuracy of a model’s 

prediction can be due to a systematic change in cognitive processing between the calibration 

set and the validation set. In this case the cognitive process could still follow the model’s 

assumptions, but it would reveal a model’s weakness in predicting new independent behavior. 

In other words, the practical value of a model that is not able to predict behavior in a slightly 

new situation to which it has not been calibrated appears rather small.  

Accordingly, there are two explanations for the poor performance of the standard 

exemplar model in the generalization test. First, the cognitive process could have changed 

from the training to the test phase, for instance, by giving different attention to the various 

cues. However, because the training and test sets had a similar structures and the procedure 



RULE- AND EXEMPLAR-BASED ESTIMATION PROCESSES 40 

was extremely similar, the assumption of a changed exemplar-based cognitive process 

appears unlikely. Furthermore, the mapping model fitted participants equally well in the 

training and test phases, suggesting that no change in processing appeared. Thus, a second 

more plausible explanation relies on the high flexibility of the exemplar model. The 

flexibility of the exemplar model could have led to fitting unsystematic error variance for the 

training phase, which led to poor predictions for the test phase.  

Quantitative Estimation and Function Learning 

Quantitative estimations share some similarities to function-learning problems 

(Busemeyer, Byun, Delosh, & McDaniel, 1997; Klayman, 1988b; Slovic & Lichtenstein, 

1971). For both types of problems a continuous criterion of a stimulus object has to be 

predicted. However, while in the quantitative estimation task examined in this article multiple 

dichotomous cues were available to predict a continuous criterion, most function-learning 

research focuses on a single continuous cue to predict a continuous criterion. In principle, a 

version of the mapping model generalized to continuous cues or the exemplar model could be 

applied to function-learning problems just as well as function-learning models generalized to 

multidimensional stimuli could be applied to quantitative estimation from multiple cues. Two 

well-known representatives are the extrapolation-association (EXAM) model (DeLosh, 

Busemeyer, & McDaniel, 1997) and the population of linear experts (POLE) model (Kalish, 

Lewandowsky, & Kruschke, 2004). While EXAM combines an exemplar-based process with 

a rule-based extrapolation mechanism, POLE assumes that a population of “linear experts” is 

used to represent nonlinear functions. That is, each training object is associated with a 

specific linear function, the linear expert, which is then used to predict the criterion for this 

object. So far these two models have only been applied to objects described by one single 

cue. Nevertheless they could be extended to multiple cues, in which case it would be 
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interesting to test their assumptions against the mapping model and the exemplar model. A 

possible test situation could be an extrapolation test, as both function-learning models allow 

for extrapolation processes while the mapping model and the exemplar model do not include 

an extrapolation mechanism.  

Final Conclusion  

Previous research has described estimation processes almost exclusively with multiple 

linear regression models. Recently new cognitively motivated models, such as the exemplar 

model by Juslin et al. (2008) and the mapping model by von Helversen and Rieskamp (2008; 

see also Brown & Siegler, 1993) have been proposed to model estimation processes. 

Interestingly, these models represent two different views on estimation processes. While the 

exemplar model proposes an implicit, similarity-based process, the mapping model assumes a 

rule-based process. The experimental studies reported here illustrate the link between the 

cognitive processes assumed by the models and the structure of the environments. We 

showed that the models’ assumptions about the estimation process were directly affected by 

different structures of the estimation task, which consequently determined which estimation 

process prevailed.  
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Appendix A 

Selection of Training and Test Sets for Studies 1 and 2 

The following tables describe the sets of items that were used in Studies 1 and 2. 

Table A1 describes the item set for the training phase of Study 1. Table A2 describes the item 

set for the training and test phases of the condition with a small number of training objects in 

Study 1 and for the condition with six predictive cues in Study 2. Table A3 describes the set 

of items for the training and test phases of the conditions with three predictive cues in Study 

2. 

We first selected the training set–test set combination for the condition with 24 

exemplars. To ensure that the training set would well represent the total set, we constrained 

the selection of training objects to contain objects with all possible cue sums approximately in 

proportion to the frequency in the whole set. To find a training set–test set combination for 

which the models made qualitatively different predictions, we generated 100 different 

training samples and calculated model predictions for the remaining objects based on the 

respective training sample by fitting the models on the training sample and making 

predictions based on the estimated parameter values. We selected the training set–test set 

combination for which the models differed most in their qualitative predictions. The training 

set consisted of 24 objects and the test set of 22 new objects. Lastly, we included 8 objects in 

the test set that had appeared in the training set. The training set is reported in Table A1, the 

test set in Table 1. 

To select the training set–test set combination for the condition with eight exemplars 

we repeated the procedure described above. To make the condition with 8 training exemplars 

more comparable to the condition with 24 training exemplars, the 100 training sets with 8 

training objects were randomly drawn from the condition with 24 training objects, with the 
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restriction that the training sample contained one object each with a cue sum of 0, 1, 2, 4, 5, 

and 6, respectively, and two objects with a cue sum of 3. Again, we obtained model 

predictions for the remaining objects and selected a test set that maximized the differences in 

qualitative predictions. The test set consisted of 22 new objects that were not included in the 

training set and the 8 known objects from the training phase (see Table A2).  

 

Table A1 

Sets of Objects for the Training Phases of Study 1 

Training 

condition Cue 1 Cue 2 Cue 3 Cue 4 Cue 5 Cue 6 Criterion 

A & B 0 0 0 0 0 0 1 

A 0 1 0 0 0 0 2 

A & B 1 0 0 0 0 0 2 

A & B 0 0 0 0 1 1 2 

A 0 0 0 1 0 1 3 

A 0 1 0 0 0 1 3 

A 0 1 0 0 1 0 4 

A 1 0 0 0 1 0 4 

A 0 0 1 1 1 0 7 

A 0 1 0 0 1 1 7 

A & B 0 1 0 1 0 1 7 

A 0 1 1 0 1 0 9 

A 1 0 0 1 0 1 8 

A & B 1 0 1 0 1 0 10 

A 1 0 1 1 0 0 10 

A 1 1 0 0 0 1 10 

A 0 1 0 1 1 1 14 

A & B 1 1 0 1 1 0 24 

A 1 1 1 0 0 1 24 

A 1 1 1 0 1 0 26 

A 1 1 1 1 0 0 27 

A & B 0 1 1 1 1 1 33 
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Training 

condition Cue 1 Cue 2 Cue 3 Cue 4 Cue 5 Cue 6 Criterion 

A 1 1 1 1 1 0 55 

A & B 1 1 1 1 1 1 100 

Note. A & B indicates objects that were used for the training condition (A) with a large 

number of training objects and for the training condition (B) with a small number of training 

objects. A indicates objects that were additionally used in the training condition (A) with a 

large number of training objects. 
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Table A2 

Sets of Objects for the Training and Test Phases of Study 1 for the Condition with a Small 

Number of Training Objects and of Study 2 for the Condition with Six Predictive Cues 

Objects Cue 1 Cue 2 Cue 3 Cue 4 Cue 5 Cue 6 Criterion Mapping Exemplar 

Test/training 0 0 0 0 0 0 1 1 1 

Test/training 1 0 0 0 0 0 2 2 2 

Test/training 0 0 0 0 1 1 2 2 2 

Test/training 0 1 0 1 0 1 7 8 7 

Test/training 1 0 1 0 1 0 10 8 10 

Test/training 1 1 0 1 1 0 24 24 24 

Test/training 0 1 1 1 1 1 33 33 33 

Test/training 1 1 1 1 1 1 100 100 100 

Test 2 0 0 0 1 0 1 3 2 7 

Test 2 0 0 0 1 1 0 3 2 9 

Test 2 0 0 1 0 1 0 3 2 10 

Test 2 0 1 0 0 0 1 3 2 7 

Test 2 0 1 0 0 1 0 4 2 9 

Test 2 0 1 0 1 0 0 4 2 7 

Test 3a 0 0 1 0 1 1 6 8 2 

Test 3a 1 1 0 1 0 0 12 8 24 

Test 3b 1 0 1 0 0 1 9 8 6 

Test 3b 0 1 0 1 1 0 8 8 24 

Test 3c 1 0 0 0 1 1 7 8 2 

Test 3c 0 1 1 1 0 0 9 8 20 

Test 3d 1 0 0 1 0 1 8 8 5 

Test 3d 0 1 1 0 1 0 9 8 21 

Test 3e 1 1 0 0 0 1 10 8 5 

Test 3e 0 0 1 1 1 0 7 8 21 

Test 4 1 0 1 0 1 1 17 24 10 

Test 4 1 0 1 1 1 0 20 24 10 

Test 4 1 1 0 1 0 1 21 24 7 

Test 4 1 1 1 0 1 0 26 24 10 

Test/extra 1 0 1 1 1 1 37 33 100 

Test/extra 1 1 1 1 0 1 50 33 100 
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Note. Test/training indicates the eight objects that constituted the training set in the condition 

with a small number of training objects in Study 1 and the two conditions with six predictive 

cues in Study 2. These eight objects also appeared in the respective test sets. Test 2 denotes 

objects with a cue sum of 2, Test 3 objects with a cue sum of 3, where pairs with the same 

letter indicate opposite cue profiles, and Test 4 objects with a cue sum of 4. Test/extra 

indicates objects that were additionally included in the test set to increase the differences in 

model predictions.  
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Table A3 

Sets of Objects for the Training and Test Phases of Study 2 for the Condition with Three 

Predictive Cues 

Objects Cue 1 Cue 2 Cue 3 Cue 4 Cue 5 Cue 6 Criterion Exemplar Mapping 

Test/training 0 0 1 0 0 0 2 2 2 

Test/training 0 0 0 1 0 1 3 3 3 

Test/training 0 1 1 0 0 0 4 4 3 

Test/training 0 1 1 0 1 0 9 9 8 

Test/training 1 0 0 1 0 1 8 8 8 

Test/training 1 1 0 1 1 0 24 24 25 

Test/training 1 1 1 1 0 0 27 27 25 

Test/training 1 0 1 1 1 1 37 37 37 

Test 2 0 1 0 0 1 0 4 9 3 

Test 2 1 0 0 0 0 1 4 8 3 

Test/extra 1 0 0 0 1 0 4 24 3 

Test 2 1 0 0 1 0 0 4 8 3 

Test/extra 1 1 0 0 0 0 6 18 3 

Test 3a 0 0 0 1 1 1 5 3 8 

Test 3a 1 1 1 0 0 0 13 16 8 

Test 3b 0 0 1 1 0 1 6 3 8 

Test 3b 1 1 0 0 1 0 11 24 8 

Test 3c 0 1 0 1 0 1 7 3 8 

Test 3c 1 0 1 0 1 0 10 16 8 

Test 3d 0 1 1 0 0 1 8 4 8 

Test 3d 1 0 0 1 1 0 9 24 8 

Test 3e 0 1 0 0 1 1 7 9 8 

Test 3e 1 0 1 1 0 0 10 27 8 

Test/extra 0 1 0 1 1 1 14 13 25 

Test 4 0 1 1 0 1 1 16 9 25 

Test 4 0 1 1 1 1 0 18 9 25 

Test 4 1 1 0 1 0 1 21 8 25 

Test 4 1 1 1 0 1 0 26 9 25 

Test/extra 1 1 1 1 1 0 55 25 37 

Test/extra 1 1 1 1 1 1 100 37 37 
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Note. Test/training indicates the eight objects that constituted the training set in the two 

conditions with three predictive cues in Study 2. These eight objects also appeared in the 

respective test sets. Test 2 denotes objects with a cue sum of 2, Test 3 objects with a cue sum 

of 3, where pairs with same letters indicate opposite cue profiles, and Test 4 objects with a 

cue sum of 4. Test/extra indicates objects that were additionally included in the test set to 

increase the differences in model predictions.   
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Appendix B  

Additional Model Comparison Tests in Studies 1 and 2 

For both studies we also tested the performance of a multiple linear regression, a unit 

weight linear model, and the standard exemplar model with a free parameter for every cue in 

predicting participants’ estimations, in addition to the mapping model and the exemplar 

model with one attention weight parameter. We conducted a generalization and a cross-

validation test.  

Generalization test. The predictions of the regression model were obtained by running 

a multiple linear regression with the cues of the training phase as predictors and participants’ 

estimations in the last four blocks as the dependent variable. On the basis of the obtained cue 

weights, predictions for the test phase were made. Similarly, the best fitting parameter value 

for the unit weight linear model was obtained by fitting the model to the estimations of the 

participants in the training phase. Then with these parameters the predictions for the test 

phase were generated. Also the exemplar models’ parameter values were estimated by using 

participants’ responses in the training phase, and the predictions for the test set were 

determined based on the estimated parameter value. The best fitting parameter values were 

calculated with a nonlinear least square method as implemented in MATLAB. For the 

simplified exemplar model one single attention parameter s was estimated; for the standard 

exemplar model si was allowed to vary freely for each cue i. For the mapping model the 

model predictions for the test set were calculated based on the cue and criterion values of the 

training set.  

Cross-validation test. For the cross-validation test, the test set was randomly split into 

two equally sized sets, one for calibration and one for validation. On the basis of the 

calibration set the parameters for all models were estimated as they were for the 
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generalization test. Then predictions for the validation set were made based on the estimated 

parameters and the RMSD between model prediction and participants’ estimates was 

determined for the validation set. This procedure was repeated 10 times to achieve reliable 

estimates and the average RMSD was used as goodness-of-fit measure. For the exemplar 

models and the mapping model the training set with its correct criterion values was assumed 

as a knowledge base.  

Study 1 

The results of the generalization test are reported in the main body of the article, so we 

concentrate here on the cross-validation test. The cross-validation test supported the mapping 

model as the best model to describe participants’ estimations (all Zs < −3.30, ps < .01). Table 

B1 provides the means and standard deviations of the models’ fit. The standard exemplar 

model performed as well as the simplified exemplar model (Zlarge = −.82, p = .41; Zsmall = 

−1.17, p = .26) and both exemplar models performed better than the two linear additive 

models in the condition with a large training set (all Zs < −3.92, p < .01). In the condition 

with a small training set both exemplar models performed better than the unit weight 

regression model (all Zs < −2.33, p < .02) and as well as the multiple linear regression (Zs > 

−1.61, p > .11).  

Study 2 

In the generalization test, the mapping model was the best model when all cues were 

predictive, outperforming the regression model, the unit weight model, and the standard and 

the simplified exemplar models (all Zs < −2.80, p < .01). The simplified exemplar model 

performed better than the regression model and the standard exemplar model in both 

conditions (Zs < −2.88, p < .01), as well as the unit weight model in the condition with 

unknown cue directions (Z = −.86, p = .41), and worse than the unit weight model in the 
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condition with known cue directions (Z = −3.92, p < .01). In the condition where half of the 

cues were predictive and cue directions were known, the mapping model again outperformed 

all other models (all Zs < −3.73, p < .01). The unit weight model was second best, 

outperforming both exemplar models and the regression model (all Zs < −3.29, p < .01). In 

the condition where the cue directions were unknown and only three cues were predictive, it 

was difficult to determine the best model. The exemplar models, the multiple linear 

regression, and the unit weight model performed about equally well, with the simplified 

exemplar model beating the unit weight model (Z = −3.17, p < .01) but being equally as good 

as the regression model (Z = −.30, p = .78) and the standard exemplar model (Z = −.08, p = 

.96). The standard exemplar model predicted the estimations of 5 (25%) participants best, the 

regression model provided the best estimations for 3 (15%), and the simplified exemplar 

model for 12 (60%). All models performed better than the mapping model (all Zs < −2.24, p = 

.02). An overview of the accuracies of the regression model, the unit weight model, and the 

standard exemplar model in Study 2 is reported in Table B2. 

The pattern of results in the cross-validation test was quite similar. The mapping 

model was the best model if the cue directions were known (Zs < −2.91, ps < .01). The 

mapping model was also better than the simplified exemplar model and the two linear 

additive models if all cues were predictive and the cue directions unknown (Z < −2.05, p < 

.04) and equally as good as the standard exemplar model (Z = −.24, p = .84), with 9 

participants better predicted by the exemplar model and 11 participants by the mapping model 

(for means and SDs see Table B3). In the condition with only three predictive cues and no 

prior information the mapping model was outperformed by the exemplar models and the 

linear additive models (all Zs < −3.62, ps < .01). The multiple linear regression model 

performed better than the unit weight model (Z = −3.73, p < .01) and the simplified exemplar 
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model (Z = −1.94, p = .05) and equally as well as the standard exemplar model (Z = −.86, p = 

.41). This suggests that participants in fact weighted the cues differentially.  
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Table B1 

Average Model Accuracies (RMSD) in Predicting the Estimations for the Cross-Validation 

Test in Study 1 

 Number of training objects 

 Large   Small  

 M SD  M SD 

Exemplar standard 10.07 1.94  13.14 2.42 

Regression 14.82 1.41  14.00 2.26 

Unit weight 16.06 1.50  14.97 2.54 

Mapping 5.69 2.00  6.39 3.92 

Exemplar simplified 9.93 1.85  13.95 1.73 
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Table B2 

Average Model Accuracies (RMSD) in Predicting the Estimations of the Regression Model, 

the Unit Weight Model, and the Standard Exemplar Model for the Generalization Test in 

Study 2 

 Number of training objects 

 Six predictive cues   Three predictive cues 

 Cue directions   Cue directions 

 Known Unknown   Known Unknown 

 M SD M SD   M SD M SD 

Training set      

  Exemplar 

standard 
1.20 1.72 7.31 6.96 

  
2.45 1.69 4.53 2.58 

  Regression 12.89 0.30 14.70 2.54   2.92 1.04 4.24 1.69 

  Unit weight 20.98 0.46 21.86 1.68   7.60 0.27 8.23 0.98 

  Mapping 1.77 1.77 8.86 8.56   2.89 1.75 6.03 3.94 

  Exemplar 

simplified 
1.40 2.03 8.40 8.07   2.68 1.78 5.61 3.63 

Test set: Old objects      

  Exemplar 

standard 
3.19 3.82 8.35 6.30   3.07 2.35 5.35 2.49 

  Regression 13.33 0.92 15.61 3.04   3.56 1.90 5.63 2.72 

  Unit weight 20.99 1.03 21.99 2.42   7.66 0.71 8.34 1.07 

  Mapping 3.44 3.73 8.39 7.94   3.12 2.46 6.35 3.22 

  Exemplar 

simplified 
3.25 3.90 8.92 8.05   2.99 2.44 6.02 3.03 

Test set: New objects      

  Exemplar 

standard 
29.94 8.20 28.18 6.68   16.57 3.30 10.05 3.10 

  Regression 27.03 2.57 27.94 3.52   13.90 3.57 10.01 2.54 

  Unit weight 18.00 2.02 21.91 3.83   12.96 3.70 10.15 1.16 

  Mapping 6.34 4.00 16.34 22.22   10.36 4.50 12.24 2.21 

  Exemplar 

simplified 
23.50 2.85 7.36 4.29   14.78 3.47 8.71 1.92 



RULE- AND EXEMPLAR-BASED ESTIMATION PROCESSES 64 

Test set: All objects      

  Exemplar 

standard 
25.75 7.10 24.72 5.72   14.31 2.88 9.17 2.49 

  Regression 24.16 2.15 25.28 3.10   12.08 3.06 9.14 2.22 

  Unit weight 18.86 1.52 21.99 3.05   11.84 2.97 9.71 1.04 

  Mapping 5.98 3.47 14.88 7.02   9.11 3.86 11.09 1.95 

  Exemplar 

simplified 
20.29 2.48 19.90 4.20   12.80 3.01 8.16 1.94 

Note. N = 80, with n = 20 in each condition.  
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Table B3 

Average Model Accuracies (RMSD) in Predicting the Estimations for the Cross-Validation 

Test in Study 2 

 Number of predictive cues 

 Six predictive cues  Three predictive cues 

 Cue directions  Cue directions 

 Known  Unknown  Known  Unknown 

 M SD  M SD  M SD  M SD 

Exemplar standard 13.34 2.37  15.00 5.43  11.97 2.78  7.35 2.60 

Regression 14.44 2.27  18.74 4.41  9.51 3.31  7.14 2.02 

Unit weight 15.24 2.23  20.18 4.20  12.16 3.06  9.58 1.09 

Mapping 5.35 2.72  14.91 7.09  8.60 3.65  11.08 2.05 

Exemplar simplified 14.29 2.19  17.57 5.22  12.57 3.21  7.99 1.76 

Note. N = 80, with n = 20 in each condition.  
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Footnotes 

1. It should be noted that the mapping model and a unit weight linear model make 

equivalent predictions if the medians of the categories are equidistant. 

2. Additionally, the feedback algorithm incorporated a correction term that determined 

the deviation that would result in a payoff of zero. It was calculated on the basis of a baseline 

model that always estimated the average criterion value. Any deviation exceeding the 

correction term led to the subtraction of points. To exclude the subtraction of a high number 

of points due to a typing error, the feedback algorithm was truncated. Any deviation larger 

than 50 was treated as a deviation of 50. A similar feedback algorithm had been successfully 

used by von Helversen and Rieskamp (2008) to create a moderately exacting feedback 

environment (Hogarth, Gibbs, McKenzie, & Marquis, 1991). 

3. We focused on the predictions of the simplified exemplar model with only one 

parameter because previous studies have indicated that the full version of the exemplar model 

is prone to over-fitting and it performed worse in the generalization test. 

4. To prevent participants from becoming discouraged by overly negative feedback in 

the beginning of the study, we truncated the feedback algorithm, similar to in Study 1. 

However, to counteract the higher difficulty in the conditions with no prior information, we 

decreased the maximum deviation: In Study 2 any deviation larger than 30 was treated as a 

deviation of 30. 

5. We also tested a version of the mapping model that included only the three cues 

that were substantially correlated with the criterion. However, overall this model did not 

perform better than a mapping model that considered all cues.  



RULE- AND EXEMPLAR-BASED ESTIMATION PROCESSES 67 

Authors’ Note 

 

Bettina von Helversen, Max Planck Institute for Human Development, Berlin, 

Germany; Jörg Rieskamp, University of Basel, Department of Psychology, Switzerland. We 

would like to thank Anita Todd for editing a draft of this manuscript. This work has been 

supported by a doctoral fellowship of the International Max Planck Research School LIFE to 

the first author and a research grant by the German research foundation to both authors (RI 

1226/5). Correspondence concerning this article should be addressed to Bettina von 

Helversen. 

 

Bettina von Helversen 

Max Planck Institute for Human Development 

Königin-Luise-Str. 5, 14195 Berlin, Germany 

Phone: ++49-30-82406699 

Fax: ++49-30-82406394 

Email: vhelvers@mpib-berlin.mpg.de 

 



RULE- AND EXEMPLAR-BASED ESTIMATION PROCESSES 68 

Tables 

Table 1 

New Test Objects in the Condition with a Large Number of Training Objects of Study 

1 

Objects Cue 1 Cue 2 Cue 3 Cue 4 Cue 5 Cue 6 Criterion Mapping Exemplar 

Test 2 0 0 0 1 1 0 3 3 7 

Test 2 0 0 1 0 1 0 3 3 8 

Test 2 0 0 1 1 0 0 3 3 8 

Test 2 1 0 1 0 0 0 5 3 7 

Test 4 1 0 0 1 1 1 16 24 8 

Test 4 1 0 1 1 0 1 18 24 9 

Test 4 1 1 0 0 1 1 20 24 8 

Test 4 1 1 0 1 0 1 21 24 8 

Test 3a 0 0 0 1 1 1 5 8 6 

Test 3a 1 1 1 0 0 0 13 8 26 

Test 3b 0 0 1 0 1 1 6 8 2 

Test 3b 1 1 0 1 0 0 12 8 25 

Test 3c 0 0 1 1 0 1 6 8 3 

Test 3c 1 1 0 0 1 0 11 8 14 

Test 3d 0 1 0 1 1 0 8 8 14 

Test 3d 1 0 1 0 0 1 9 8 24 

Test 3e 1 0 0 0 1 1 7 8 3 

Test 3e 0 1 1 1 0 0 9 8 27 

Test/extra 1 0 1 0 1 1 17 24 10 

Test/extra 0 1 1 0 1 1 16 24 16 

Test/extra 0 0 0 0 1 0 1 2 3 

Test/extra 1 0 1 1 1 1 37 44 100 
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Note. Test 2 denotes objects with a cue sum of 2, Test 3 objects with a cue sum of 3, where 

pairs with the same letter indicate opposite cue profiles, and Test 4 objects with a cue sum of 

4. Test/extra indicates objects that were additionally included in the test set to increase the 

differences in model predictions.  
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Table 2  

Model Accuracies in Predicting Estimations for Study 1 

 
Number of training objects 

 Large  Small  

 M SD   M SD 

Training set      

  Exemplar standard 4.14 1.45   3.21 2.51 

  Regression 13.06 0.54   15.70 0.66 

  Unit weight 16.05 0.53   20.91 0.70 

  Mapping 5.37 1.12   3.63 2.77 

  Exemplar simplified 4.38 1.66   3.53 2.81 

Test set: Old objects      

  Exemplar standard 3.46 2.76   6.31 7.90 

  Regression 19.40 0.76   16.93 3.09 

  Unit weight 22.87 0.72   21.13 2.13 

  Mapping 5.28 1.70   5.94 8.24 

  Exemplar simplified 3.27 2.54   5.86 8.21 

Test set: New objects      

  Exemplar standard 16.89 4.86   34.76 7.99 

  Regression 8.96 1.57   27.86 3.65 

  Unit weight 11.03 1.34   17.83 1.64 

  Mapping 5.88 2.32   5.74 3.52 

  Exemplar simplified 15.45 2.37   22.63 1.82 

Test set: All objects      

  Exemplar standard 14.65 2.76   30.23 6.74 

  Regression 12.66 0.97   25.47 3.05 

  Unit weight 15.14 0.87   18.81 1.31 

  Mapping 5.80 1.93   6.63 4.02 

  Exemplar simplified 13.39 2.10   20.00 2.06 

 

Note. N = 39, with n = 20 in the condition with a large training set and n = 19 in the condition 

with a small training set. 
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 Table 3 

Cue–Criterion Correlations in Study 2 

 Cue 1 Cue 2 Cue 3 Cue 4 Cue 5 Cue 6 

Criterion (six predictive cues) 0.37 0.60 0.63 0.60 0.47 0.43 

Criterion (three predictive cues) 0.79 0.15 0.17 0.58 0.56 0.11 
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Table 4  

Model Accuracies in Predicting Estimations for Study 2 

 Number of predictive cues 

 Six predictive cues  Three predictive cues 

 Cue directions  Cue directions 

 Known  Unknown  Known  Unknown 

 Mapping Exemplar  Mapping Exemplar  Mapping Exemplar  Mapping Exemplar 

Training set           

  RMSD 1.77 1.40  8.86 8.40  2.89 2.68  6.03 5.61 

  SDRMSD 1.77 2.03  8.56 8.07  1.75 1.78  3.94 3.63 

Test set: Old objects 

  RMSD 3.44 3.25  8.39 8.92  3.12 2.99  6.35 6.02 

  SDRMSD 3.73 3.90  7.94 8.05  2.46 2.44  3.22 3.03 

Test set: New objects 

  RMSD 6.34 23.50  16.34 22.22  10.36 14.78  12.24 8.71 

  SDRMSD 4.00 2.85  7.36 4.29  4.50 3.47  2.21 1.92 

Test set: All objects 

  RMSD 5.98 20.29  14.88 19.90  9.11 12.80  11.09 8.16 

  SDRMSD 3.47 2.48  7.02 4.20  3.86 3.01  1.95 1.94 

 

Note. N = 80, with n = 20 in each condition. RMSD is root mean squared deviation 
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Figure Captions: 

 

Figure 1.  

Qualitative model predictions. The models’ predictions for the two qualitative tests, 

when varying the values of the exemplar model’s attention parameter s. The “4 vs. 2” denotes 

the predicted average differences in estimations for the criterion values of test objects with a 

cue sum of 4 and test objects with a cue sum of 2. The “3” refers to the predicted average 

differences in estimations for the criterion values of the pair of test objects with a cue sum of 

3, with maximally different cue profiles (e.g., 111000 and 000111). (A) The predictions for 

the condition with a small number of training objects. (B) The predictions for the condition 

with a large number of training objects. 

 

Figure 2.  

Qualitative model comparison test in Study 1. (A) Qualitative predictions of the 

models and the participants’ estimations in the condition with a small number of training 

objects (n = 19). (B) Qualitative predictions of the models and the participants’ estimations in 

the condition with a large number of training objects (n = 20). Sum of cue values “3” gives 

the average difference in estimations for the criterion values of the pair of test objects with a 

cue sum of 3 with maximally different cue profiles. Sum of cue values “4 vs. 2” gives the 

average difference in estimations for the criterion values of test objects with a cue sum of 4 

and test objects with a cue sum of 2; error bars denote ±1 SD.  
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Figure 3.  

Models’ accuracy in predicting the participants’ estimations for the new objects in the 

test phase of Study 2. (A) Models’ accuracy when the cues’ directions were known (N = 40, 

20 for each condition). (B) Models’ accuracy when the cues’ directions were not known (N = 

40, 20 in each condition). 

 

Figure 4.  

Qualitative test in Study 2. (A) Qualitative tests for the condition with known cue 

directions and three predictive cues. (B) Qualitative tests for the condition with known cue 

directions and six predictive cues. (C) Qualitative tests for the condition with unknown cue 

directions and three predictive cues. (D) Qualitative tests for the condition with unknown cue 

directions and six predictive cues. Sum of cue values “3” gives the average difference in 

estimations for the criterion values of the pairs of test objects with a cue sum of 3 with 

maximally different cue profiles. Sum of cue values “4 vs. 2” gives the average difference in 

estimations for the criterion values of test objects with a cue sum of 4 and test objects with a 

cue sum of 2. Error bars denote ±1 SD; n = 20 in each panel. 
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Figures 

 

Figure 1.  
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Figure 2.  
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Figure 3.  
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Figure 4 

 

 
 


